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ABSTRACT

Private data federations enable multiple data owners to query the
union of their secret data such that no party has access to the pri-
vate inputs of another and the only information revealed is that
which can be gleaned from the query output. Here, the data owners
compute the query result amongst themselves using cryptographic
techniques. Oblivious computation guarantees that a program’s
observable transcript — its instruction traces, I/Os, and network uti-
lization - does not change as a function of a query’s private inputs.
Although this protects against side channel leakage, it has query
runtimes that are multiple orders of magnitude higher than run-
ning the same query with no privacy guarantees. This performance
overhead makes it impractical for large workloads.

We propose a framework that offers a private data federation
users a decision space between these two extremes of full oblivi-
ousness and no privacy during query evaluation. KloakDB has a
novel semi-oblivious query processing model, and it provides users
with a fine-grained privacy-performance trade off. It generalizes
k-anonymity to model the information revealed by a federation dur-
ing query evaluation. k-anonymous query processing, is based on
the widely deployed privacy model k-anonymity. It is the de-facto
standard for data releases in many domains including healthcare
and education research. K-anonymous query processing ensures
that side channel information revealed during query execution for
each record is indistinguishable from those of k or more records.
With modest values for k, KloakDB demonstrates speedups of 15X-
1060x over oblivious query processing.
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1 INTRODUCTION

Private data federations enable data owners to query the union
of their datasets without sharing their input tuples with one an-
other. The data owners compute the query amongst themselves
using cryptographic techniques such that the only information
they glean is the input size of each participant and (at most) the
query output. Unfortunately, these techniques exact a breathtaking
performance penalty of several orders of magnitude to achieve
strong theoretical privacy guarantees. On the other hand, revealing
query runtimes, intermediate operator cardinalities, memory ac-
cess patterns, network traces, and other metadata provides robust
side-channel information about a query’s private inputs to a data
owner participating in its evaluation. If we were to evaluate our
queries by computing over encrypted data using standard DBMS
operator algorithms, their instruction traces would leak substantial
information about the query’s private inputs [29, 30, 36]. In this
work we propose a middle way between these two extremes to
provide practical security guarantees at runtime for private data
federation queries.

In prior work, data owners compute the query using oblivious
algorithms. We say that an algorithm’s execution is oblivious if its
observable transcript — its instruction traces, I/Os, and network
transmissions — are not predicated on the contents of its private
inputs. Although oblivious query processing provides strong pri-
vacy guarantees, its performance makes it impractical for all but the
smallest query workloads. For example, a fully oblivious query with
multiple joins requires each join’s output cardinality to be equal to
the cross product of the inputs. Hence, a 3-way join will incur an
overhead of O(n®) and produce an output cardinality of the same
magnitude. Existing systems perform this oblivious query evalua-
tion either in trusted hardware — via secure enclaves [3, 13, 22, 74] -
or software, using secure multi-party computation (MPC) [5, 6, 66].
Our approach is agnostic to this design choice and we support both
types of secure computation back-ends in this work.

Oblivious query processing can be too strict in many use cases.
Despite that, many systems need a certain level of anonymiza-
tion for privacy and regulatory compliance, such as the GDPR’s
pseudonymization proviso. It allows “the processing of personal
data in such a manner that the personal data can no longer be
attributed to a specific data subject without the use of additional in-
formation” [33]. To take advantage of this opportunity, we propose
k-anonymous query processing, a semi-oblivious query processing
model based on k-anonymity. A data release is k-anonymous [61]
if the records of an individual are indistinguishable from those of
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at least k — 1 others. We generalize this work by making a private
data federation’s instruction traces k-anonymous. Hence, when a
curious data owner observes a query’s evaluation - e.g., its branch-
ing and looping - the only information they can glean is in batches
of k tuples or more. Note that this differs from k-anonymous data
releases because the attacker only sees encrypted data throughout
the query’s lifecycle. This framework creates a tunable privacy-
performance trade off by enabling the private data federation’s
stakeholders to tune the k with which we process our queries. This
model provides protection against side channel leakage and signifi-
cant performance benefits over oblivious query processing.

K-anonymity is currently the standard for data releases in the
context of electronic health records [16, 21, 49], education research [12,
23, 59], government data releases [24, 26, 73], and others. GDPR
has a data pseudonymization provisio, permitting data controllers
and data processors to relax their data protection obligations by
removing direct identifiers from a data set and limiting indirect
identifiers so long as the threat of re-identification is not “reason-
ably likely” [32]. Because of its widespread use, we propose this
model of semi-oblivious query processing despite the well-known
shortcomings of k-anonymity [1, 18, 25, 42—-44]. The widespread
use of this privacy model enables this work to have immediate
impact.

We present KloakDB, a private data federation that offers k-
anonymous query processing to protect query inputs at runtime.
KloakDB offers an end-to-end architecture to uphold its security
guarantees. To do this we designed an extensible architecture that
accounts for information leakage before and after the query runs,
in addition to its core runtime guarantees. Before it may run its
first query, the system takes in a query workload - a set of query
templates — and a set of shared table definitions supported by all
of its member DBMSs. It analyzes the workload to identify at-
tributes that will alter the control flow of its queries and constructs
a k-anonymous processing view over these columns. We propose a
lightweight, oblivious algorithm to compute this view efficiently.
After k-anonymous query processing, the data owners must still
work amongst themselves to protect the output of the query from
reverse engineering attacks. There are already well-known tech-
niques for doing this for common data release mechanisms such
as k-anonymity [39] and differential privacy [45]. KloakDB imple-
ments an efficient, oblivious data release mechanism based on the
one in Shrinkwrap [6].

To summarize, our main contributions are:

e Formalizing the model of k-anonymous query processing
as a suite of semi-oblivious database operators that offers a
privacy-performance trade off for computing its queries.

e Designing and implementing KloakDB, a private data fed-
eration prototype that provides end-to-end guarantees for
queries executed k-anonymously.

e Evaluating KloakDB on both synthetic and real-world work-
loads, verifying the performance, verifying the advantage
of and privacy trade-offs k-anonymous query processing
and the efficiency of our end-to-end workflow.

The rest of this paper is organized as follows. In Section 2 we
review the key ingredients for our approach. After that, Section 3
introduces KloakDB with a system overview and its workflow

which we illustrate with a running example. Next, we formalize
k-anonymous query processing in Section 4 and go in-depth on the
KloakDB architecture in Section 5. Section 6 reveals our experimen-
tal results. After that, we survey the related work and conclude.

2 BACKGROUND

KloakDB combines ideas and tools from multiple facets of privacy,
security, and data management. We introduce the building blocks
that we use in this section. We provide overviews of k-anonymity,
private data federations, secure computation backends, side channel
leakage, and oblivious query processing.

2.1 K-anonymity

K-anonymity was proposed by Sweeney [61] as a solution to link-
ing attacks on publicaly released datasets. A linking attack uses a
private release of a dataset in conjunction with publicaly available
information in order to identify and single out individuals. Here,
the existence of certain attributes, quasi-identifiers, available in both
the privately released dataset as well as the public datasets was
the root cause of the relinking attacks. K-anonymity tackles this
by requiring all projections onto a databases’s quasi-identifiers to
have at least k tuples. Recall that, k-anonymity is the cornerstone
of regulatory requirements in numerous industries.

Definition 2.1. Quasi-identifier (informal) On a relation R, a quasi-
identifier (QI) is a sensitive attribute that may enable attackers to
reidentify individuals in a dataset..

By the Definition 2.1, quasi-identifiers are the attributes that
can be potentially used in linking attacks. The selection of quasi-
identifiers follows the best practices of the domain where k-anonymity
is deployed.

Definition 2.2. K-anonymity A data set is said to satisfy k-anonymity
for an integer k > 1 if, for each combination of values of quasi-
identifier attributes, at least k records exist in the data set with that
combination.

Limitations of K-anonymity. We consider the limitations of k-anonymity.
We note that common vulnerabilities to k-anonymity do not directly
apply to our system, as follows:

o Attribute disclosure: The private data federation agrees upon
the query workload a priori, and thus can reject queries
whose execution would result in attribute disclosure. Query
admission is not in the scope of this paper.

e Data Utility: Input data is often modified to achieve k-
anonymity. This results in data utility loss. In our system,
we do not modify the input data, by default.

e Composability: Our system does not release anonymized
data sets. Additionally, KloakDB assumes a fixed query
workload.

2.2 Private Data Federations

A private data federation enables multiple, autonomous database
systems to pool their sensitive data for analysis while keeping their
input records private. It starts with a common set of table definitions
against which the client queries. The tables may correspond to data
on a single host or they may be horizontally partitioned among



multiple data owners. We focus on the latter scenario in this work,
although the system’s core architecture is amenable to both. The
shared schema is publicly available, and a query workload is agreed
upon before running the first query. Each data owner wishes to
keep their sensitive tuples private, but they are willing to reveal
the results of queries over the union of their data with that of other
federation members. The data owners may optionally add a security
policy for the analysis on their combined data, such as restricting
the columns that are visible to the client or noising their results
using differential privacy. This work does not address access control
on data release.

2.3 Privacy-preserving Query Processing

Privacy-preserving query evaluation provides confidentiality for
private data federations during query runtime. KloakDB utilizes
hardware enclaves and secure multiparty computation to uphold its
guarantees. We refer to these as secure computation backends. The
secure computation backend implementations are interchangable
in our system architechture, allowing users to tailor the system to
their specific security and privacy needs.

Secure Multiparty Computation. Secure multiparty computation
(MPC) enables multiple parties to compute functions on secret
data without revealing the underlying inputs. Given a function
f(x,y) = z, two parties can computer over their private data x, y
and get the result of the function z. KloakDB uses EMP Toolkit [68]
as our MPC backend, for the speed that it offers, as well as ease of
interface. EMP Toolkit implements a semi-honest two party protocol.
In the semi-honest setting, we assume that parties will honestly
follow the protocol, however they remain curious and monitor side
channels to gain unauthorized information about the private inputs
of other protocol participants. EMP-Toolkit implements a malicious
two party protocol, we leave it to future work to extend KloakDB
to support this. Our current MPC implementation computes among
two parties. Recent work has demonstrated efficient MPC protocols
for more than two parties [69], we leave it to future work to extend
our implementation to support more than two parties.

Hardware Enclaves. Trusted execution environments such as Intel
SGX [10] and AMD Memory Encryption [35] are available on most
new commodity systems. The code and data associated with an
enclave is sealed; the system in which it is executing may not view
or change its contents. This enclave uses remote attestation to
prove to an authority, e.g., that the code and data it is running
has not been tampered with and that the code executes on trusted
hardware alone. Once an enclave has attested its code, this opens up
a secure communication channel to which the parties to send their
sensitive data. Secure enclaves have a protected region of memory,
the encrypted page cache (EPC), that is not accessible by the host
operating system or hypervisor. ntel SGX’s memory protection has
received substantial interest from the security community, with side
channel attacks being discovered [10, 38, 64, 65, 67] and fixed [11,
58, 60] on a regular basis. Addressing the shortfalls of present-
day hardware enclave implementations is beyond the scope of this
work.

2.4 Side Channel Leakage

Side channel leakage is the information that is revealed through
observing a program’s execution behavior. Memory access patterns,
network transmissions,and CPU instruction traces are examples
of the execution behavior of a program. With query processing,
output cardinalities and execution time are examples of execution
behavior which leak side channel information. Adversarial parties
observe these side channels in order to infer sensitive information
about the input data. While these adversaries are considered pas-
sive, these side channels can lead to powerful attacks on private
data. Xu et al [71] showed that access pattern leakage can extract
complete text documents and outlines of JPEG images. Through
repeated querying and with access to the query distribution and the
output cardinalities, an adversary can determine secret attributes
of individual records in a database [36]. On a macro level, query
processing can reveal secret distributional information about the
input data [3].

Oblivious Query Processing. Existing work solves the problem of
side channel leakage with oblivious query processing. Here the
parties computing the query learn nothing more about the inputs
of others than they would if all of the members of the federation
uploaded their data to a trusted third party that ran the query and
returned its results to the client. However the substantial overheads
associated with running a leak-free program make it impractical to
use on large data sets or complex queries. For example an oblivious
equi-join on two relations of length n will unconditionally output
n? output tuples. Oblivious operator algorithms exist that don’t
have O(n?) complexity, and we discuss these further in Section 7.
Oblivious query processing’s all or nothing approach is inflexible,
not offering federation members tunable trade-offs for privacy and
performance, while upholding regulatory compliance in relevant
domains.

3 KLOAKDB

In this section we describe the preliminaries of KloakDB. First we
define the system’s trust model and security guarantees. We then
describe the architecture of the private data federation and walk
through the life of a query.

3.1 The KloakDB Private Data Federation

The KloakDB private data federation consists of three classes of
parties:

o Query Client: The client has access to the shared schema,
and accepted query workload that the federation has agreed
upon. The client can issue any query from the query work-
load to the federation. The client receives an encrypted
query result that has been passed through a data release
mechanism, from the federation. It can observe the amount
of time the query takes, however it does not have access to
intermediate results.

e Data Owners: Data owners agree upon a shared set of table
definitions, and queries before joining the data federation.
All query processing and computation happens within the
pooling of the data owners’ resources. Data owners receive



True Relations 2-anon Processing View K-anonymous Query Proce:

demographic || diagnosis | |demographic|| diagnosis COUNT(diag, *, 0, (demographic) =4, diagnosis)
ID | Sex ||ID| Diag ID | Sex ||ID| Diag Filter: demo, = o _ (demographic):
1] ™M [[2] o | M |o¥] m KPV: (0% E0* BY(LAEXLS.)
2 F 4 flu 0* F 0* flu True vals: (2, F)(4. F)(10. F)(11. F)
3 M 4 |infection | | 0% M 0* | infection
4 | F ||6infection|| 0* | F |[0*|infection| Join: diy, = demo, =, diagnosis:
10 F 12| migraine | | 1* F 1* | migraine| KPV:  (Q£0%.f1u)(0*,0%,flu)(0*,0%,flu)(0*.0* flu)
T . s (0*,0%,inf)( 0*,0*,inf)(0*.0*,inf)(0*,0*,inf
] F|[13]migraine] | 1 F [ [migraine | e vals: (2,2, flu)(2, 4,u)(4, 2,u)(4 40lu)
(2, 4, inf)(2, 6,inf)(4.4.inf) (4,6,inf)
Client Query:

SELECT diag, COUNT (%)

FROM demographic de, diagnosis di
WHERE de.id = di.id AND sex=F
GROUP BY diag;

Aggregate: diag, COUNT(*) FROM d, ; :

KPV: (flu2)(inf.1)
True vals: (flu.2)(inf.1)

Figure 1: K-anonymous query processing example. True (non-
dummy) tuples are underlined.

encrypted secret inputs from each other. The only unen-
crypted data they have have access to is their own. Through
MPC or trusted hardware, they are able to compute over
encrypted data shared by other data owners, while com-
bining their secret data. Data owners will snoop on all side
channels.

o Coordinator: The coordinator is the bridge between the
client and the data owners, the coordinator is an inter-
mediary who assists in query planning, distributed query
execution planning, and data release. The coordinator only
has access to encrypted data from the data owners. We
note that the coordinator can be chosen amongst the data
owners, or as an external third party.

3.2 Running Example

Consider the query in Figure 1. It counts the times a woman is
diagnosed with a given ailment. It first filters the demographic
table for women, joins the selected tuples with the diagnosis table,
and counts the times each condition appears in the join result. Sex
and diagnosis have a k-anonymous security policy where k = 2.
We demonstrate this in the single database setting such as that of
outsourced operations in the cloud.

The query planner first creates a 2-anonymous processing view.
To illustrate this, we use generalization—omitting the least signifi-
cant digit of the IDs-instead of KloakDB’s freeform k-anonymization
here. The view must have at least two individuals (IDs) in each
equivalence class. All of the tuples in an equivalence class are indis-
tinguishable from one another during query processing. We divide
the ID column by 10 in both relations to suppress the least sig-
nificant digit. Each relation has three equivalence classes, and for
demographic they are: (0%, F) (0%, M), and (1%, F). Each equivalence
class has a bitmask with a bit or dummy tag for each tuple denoting
if it is a placeholder to mask the role of individual tuples in the
group. When we run the query, the filter first examines each equiv-
alence class and either 1) outputs it in its entirety if it contains at
least one match—-obliviously marking a dummy tag on each tuple
to denote if it met the selection criteria; or 2) produces an empty
set. The filter outputs two of the three demographic equivalence
classes.

Next, we join the filtered demographics tuples with the diag-
noses using the same all-or nothing logic to uphold tuple indistin-
guishability over an equivalence class. When the join compares two
equivalence classes its output is either size of their cross-product

of its inputs or an empty set. This join outputs two equivalence
classes: (0%, flu) and (0%, infection) and three true tuple matches. If
we ran this obliviously the join would output the cross-product
or 36 tuples, instead of the 8 shown here. Clearly, k-anonymous
query processing has an opportunity to substantially boost the
performance of private data federation queries.

After the join, the aggregate iterates on its results one equiva-
lence class at a time to count up the diagnoses for each ailment. For
a given group-by bin, an aggregate outputs either: 1) a single tuple
if >= k individuals contributed to it; or 2) a dummy-padded set of
tuples equal in length to the source equivalence class. An observer
can learn about no fewer than k individuals at a time by observing
these outcomes because they either learn that all of the tuples in
the class had the same group-by value or that we processed the
equivalence class obliviously. At first glance, it may appear that the
group-by of (0%, infection) would be processed obliviously. As we
will see in the coming sections, the anonymity of an equivalence
class is transitive as it passes through a k-anonymous operator.
Because the join compares all tuples in an equivalence class to its
potential matches in the joining relation, its output is fully padded.
Hence, the join did not reveal its selectivity over this equivalence
class and the groups with which it was paired. Then the count
operator visits all four tuples in the infection group and emits a
single tuple with the true count.

3.3 Threat Model

We delegate the trust model to the secure computation backend. In
this setting we consider two possible trust models: 1) honest-but-
curious, 2) malicious. Our modular architecture relies on the secure
computation backend for data protection , and so the trust model
reduces to the trust model of the secure computation backend.
Honest-but-curious is considered the standard trust model for the
untrusted cloud setting [46]. Honest-but-curious and semi-honest
can be used interchangeably to describe the same trust model. The
honest-but-curious trust model assumes that all parties will hon-
estly follow the protocol defined by the data federation, but will
curiously monitor side channels to gain access private information
of other federation members. The trust model implies that data
owners will provide their genuine datasets into the data federation;
maliciously crafted inputs are not allowed. Data owners and clients
will attempt to learn as much as possible from observing the query’s
execution. Data owners will monitor memory, CPU, and network
side channels, in addition to operator execution time and interme-
diate result sizes with local and distributed operators. For example,
a federation member upholding honest-but-curious trust assump-
tions will faithfully execute enclave code, but will also snoop on
memory channels to gather memory access pattern information.
In the malicious security model, participants are allowed to devi-
ate arbitrarily from the protocol. The protocol still guarantees that
the privacy of participant inputs is maintained. While the privacy
guarantees are significantly stronger, malicious protocols have sig-
nificant overhead compared to honest-but-curious protocols. By
default KloakDB implements honest-but-curious protocols.

3.4 Problem Statement

We consider a private data federation 7 consisting of one client,
C, and n data owners DO = {Dj, ..., D} with a shared schema,



7, consisting of relations R = {Ry, ..., Ry }. The data owners agree
upon a query workload Q = {Q1, ..., Qp}, where Q; is a query tem-
plate. The client, C, may issue any query instance, g; that is based
on template Q; € Q. The client issues the query to a coordinator.

Consider the following query lifecycle. A query g; is issued to the
coordinator, who plans the query and constructs a distributed query
execution plan. With the secure computation backends, the data
owners run the distributed query execution plan, and then return
the encrypted results to the coordinator. The coordinator then runs
a data release mechanism in its secure computation backend, and
then returns the final result to the client.

We now introduce the security guarantees of k-anonymous
query processing. We reason about these properties in terms of the
database columns that will impact the control flow of a private data
federation query. Hence:

Definition 3.1. Control Flow Attribute: For a query instance
q; on schema 7, the control flow attributes are the set of attributes
C € 7 that change the instruction traces of the operators in g;’s
query tree.

Control flow attributes are the private attributes that affect the
query’s observable transcript from the data owners’ point-of-view.
It encapsulates the query’s instruction traces - including branch-
ing, loop iterations, early termination — as well as its hardware
utilization, e.g., memory access patterns, network traces, and CPU
time. Metadata associated with the query’s evaluation, such as its
intermediate result cardinalities, are also a part of its side-channel
leakage. The control flow attributes of joins are their join keys.
Filters use the columns referenced in their predicates for this, ag-
gregates have their transcript informed by their group-by columns,
sorts use the order-by expression, and set operations reference
all columns in their schema. As tuples move up the query tree,
KloakDB projects out any unnecessary columns after each operator.
We union the control flow attributes of each operator in the query
tree to derive the query’s end-to-end column set. KloakDB’s query
evaluation is k-anonymous with respect to each query’s control
flow attributes.

We now introduce the anonymity guarantee KloakDB offers data
owners during query execution. KloakDB queries have instruction
traces that have the same distribution as they would if the query
were executing over a view of the dataset that is k-anonymous with
respect to its control flow attributes. With this in mind, KloakDB
guarantees:

Definition 3.2. K-anonymous Query Processing: Consider a
query instance,q;, that accesses relations specified by the schema 7.
It has control flow attributes, C; where C; € 7. When the system
evaluates g; on a dataset, D, there exists a function V¢ for creating
a k-anonymous view of O with respect to C;. A semi-oblivious
algorithm for running the query, Q’, satisfies the requirements of
k-anonymous query processing iff its instruction traces are com-
putationally indistinguishable from those of a simulator running
qi over Ve (D) for a probabilistic polynomial time adversary. In
other words:

Trace(Q(Vo(D))) £ Trace(Q' (D))

This definition guarantees that the instruction trace of a tuple
will be indistinguishable from at least k — 1 other tuples. Consider

our query from the running example in shown in Figure 1. The
query’s execution is anonymous with respect to demographic. sex,
demographic.id, diagnosis.id, and diagnosis.diag. A curious
data owner may observe the size of the intermediate results after
the join and use the instruction traces to deduce how many tuples
contributed to each group-by bin. At the high level, an adversary
may be able to trace a single tuple from start to finish for a federated
query evaluation.

K-anonymous query processing ensures that each tuple that
flows through cannot be singled out: the definition above guaran-
tees that the traces of any single tuple will be shared amongst at
least k — 1 others. The definition is a bottom up definition: we focus
on an adversary monitoring a single tuple from ingest until query
release. The k-anonymous processing view’s tunable security pa-
rameter, k, enables a private data federation to choose and enforce
a security policy based on the workload.

4 K-ANONYMOUS QUERY PROCESSING

We will now dive into how KloakDB upholds its anonymity guaran-
tees in Definition 3.2. Let’s begin with a instance g; that evaluates
over the federation’s shared schema, 7. The schema is a lossless,
dependency-preserving join decomposition. To capture the infor-
mation revealed as tuples flow up the query tree, we model our
query processing in terms of a schema-level k-anonymous view
comprised of natural joins as R, = Ry > ... > Ry,. K-anonymous
data releases partition the data into equivalence classes where each
tuple in a class is indistinguishable from its peers with respect to
its quasi-identifiers. Each equivalence class must contain k or more
tuples. In KloakDB, our equivalence classes are k-anonymous with
respect to the quasi-identifiers in 7~ that are referenced in g;.

Definition 4.1. Multi-relation k-anonymity Consider a

k-anonymous processing view, V¢, over relations R that is anonymized

with respect to C. We say that this view of a database instance D
is k-anonymous iff for every valid value t; € C, oc=, (Vo (Rs))
produces either > k tuples or an empty set.

This is a generalization of [48], we extend it to take into account
how the control flow attributes may be greater than the size of the
private attributes in our schema definition. Because we do taint
analysis on the query tree for each template, C; includes all of the
private columns we computed over as well as any attributes that
change the control flow of the program after we compute on our
first private value. In order for us to maintain a k-anonymous view
of D among the data owners, an execution transcript of g; running
over D may reveal no more information than we could glean from
observing an execution of g; over V¢ (Ry). Individual k-anonymous
operators in KloakDB do this by obliviously evaluating over each
equivalence class discretely. This upholds the k-anonymous view
among the data owners owing to the following property:

Subset Property [39]: If D is k-anonymous with respect to C, then
D is k-anonymous with respect to any set of attributes C * such
that C* € C.

Proof: Consider the frequency set of O with respect to C. If we
remove any attribute C; from C, each of its equivalence classes will
either remain the same or it will coalesce with another one. Thus
each frequency set will be greater than or equal to its previous size.
[m]



Hence, every C; C C is itself k-anonymous. In addition, we need

to ensure that as we sequentially run operators in the query tree
such that composing them will uphold our security guarantees:
Transitivity Property: Given a relation R; that is k-anonymous
with respect to C, the execution and the intermediate cardinalities
of any transformations predicated on C or C; C C are themselves
k-anonymous.
Proof: In V¢ (D) each tuple is indistinguishable from at least k—1
others. Thus the transcript of transformations on a k-anonymous
relation cannot reveal information that is not present in the source
view. 0O

Owing to the transitivity property, we reason about the view
over which we compute each operator in the query tree. Each
input relation, R}, is anonymized with respect to C; € C, its subset
of the control flow attributes. Since every k-anonymous operator
that computes on R; will reveal information about its control flow
attributes — or a subset thereof — it will uphold the federation’s
anonymized view of the data. Hence for all Rj € R, we create a
k-anonymous processing view.

Definition 4.2. K-anonymous Processing View Consider a
relation Rj, and its control flow attributes, C ; = C NR;. All compu-
tation over R; — either alone or in conjunction with other relations
- is at a minimum k-anonymous with respect to C ;. The rela-
tion is anonymized as R;. = Ve, (Rj). R;. satisfies our requirements
for k-anonymous query processing iff for every valid value ¢t; €
C, oc=t; (Ve (R4)) produces either > k tuples or an empty set. Its
output admits duplicate rows.

When we compute over a k-anonymous processing view, we
run a query Q over a subset of the relations, Q(Vc, (Ry) »< ... »<
Ve, (Ri)). Since we are eagerly anonymizing the control flow at-
tributes, our execution traces will protect at a level greater than or
equal to that of running Q(Vc; (R:)).

Before we describe how KloakDB’s operators provide the in-
variants above, we extend k-anonymous processing views to the
federated setting. When considering anonymized views in Defi-
nition 3.2, the data is not combined with tuples from other hosts.
If a k-anonymous processing view satisfies Definition 4.3, then it
will also uphold the guarantees of k-anonymous query processing
regardless of how much data was contributed by each host for a
given operator. In other words, if the host does a what-if analysis
of removing his or her tuples from the equivalence class, it will not
expose data about fewer than k tuples.

Definition 4.3. Federated K-anonymous Processing View D

= Vo (R,) is horizontally partitioned over n hosts, D = {Dy, ..., Dy}

To ensure that no data owner learns about fewer than k tuples at a
time, for every data owner i, their view of a KloakDB query runtime
is k-anonymous in the absence of their contributed tuples. Hence,
Vi € n, and for each t; € the domain of C, a;,=¢c (Vo (D — Dy)),
produces either > k tuples or an empty set. Its output rows may
include duplicates.

4.1 K-anonymous Query Processing Operators

For this section, we consider the query Q and it’s operator decom-
position O = {oy, ..., 0n}. K-anonymous operators take as input a
k-anonymous processing view. These views have been anonymized

with respect to the anonymization attribute set C, and Definition 4.3.
The views are thus are partitioned into equivalence classes, where
each equivalence class has at least k tuples. Each operator, o; has a
set of control flow attributes c,, C C.

Definition 4.4. Anonymized Equivalence Class For a relation
R; with anonymized attribute set C;, and equivalence class ep with
respect to attribute p € P is a multi-set of tuples who share the same
anonymized value for attribute p. Note: In order for a view to be a
k-anonymous processing view, it must hold that the projection onto
any anonymized equivalence class ep have > k tuples.

Definition 4.5. K-anonymous Query Processing Operators
An operator, O; computes over 1-2 input relations {R;}, with quasi-
identifiers (or private attributes) P. P consists of both private at-
tributes and any additional ones that compute over the output of a
k-anonymous query evaluation. O; is a k-anonymous query pro-
cessing operator if the input relations and output relation form
k-anonymous views, Vpyc ({R;}), and Vpyc (Rourpur) respectively.

Intuition for KQP. K-anonymous query processing guarantees
that the instruction trace of a tuple will be indistinguishable from
at least k — 1 other tuples. Consider the following aggregate query:

SELECT COUNT(*) FROM DIAGNOSIS di, DEMOGRAPHIC dem
WHERE DIAG="heart_disease", di.id=dem.id
GROUP BY RACE

For a distributed query execution plan, an honest but curious ob-
server could monitor the size of the group by bins, and gain infor-
mation about tuples present in the bins. In particular, if an honest
but curious observer monitored network traces, memory access
patterns, and execution time, they may be able to trace a single
tuple from start to finish of a query. If an observer had gained de-
mographic information, an observer could single out individuals
with heart disease based on group by bin size.

We now describe the implementation and design of the sort,
project, filter, join, and aggregate operators.

Sort. We implement bitonic sort, an oblivious sort algorithm. The
anonymized attribute set are the sort keys used. However, we do
not implement a specific k-anonymous sort algorithm.

Project. By the subset and transitivity properties listed above, the
project operator can implement a standard projection algorithm.

Filter. A filter with predicate f can leak access pattern information
based on which tuples match the predicate f. The predicate f is the
control flow attribute, and thus is in the anonymized attribute set,
f € C. Our filter operator obliviously iterates over all input tuples,
and marks tuples matching the filter predicate as “non-dummy*,
and non-matching tuples as “dummy*“. With this, the input and
output cardinalities are equal, thus leaking no information about
the selectivity of the filter predicate. The input relation has at least
k tuples in each equivalence class, and thus the output relation also
must have at least k tuples in each equivalence class. A filter on
attributes k

Join. Only equi-inner joins on a single attribute are supported.
A join with predicate j on two relations Ry, Ry, has control flow
attribute j on both relations. The join operator takes in anonyimzed
equivalence classes partitioned by the anonymized attribute j from
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Figure 2: The privacy-performance decision space for use in
k-anonymous processing view generation.

each relation, and obliviously joins them together. For attribute j
each tuple has the real value of j as well as the anonymized value.
If the anonymized values for j from each relation are equal, the join
algorithm unconditionally outputs a joined tuple, otherwise it does
not output a tuple. The output tuple is obliviously marked as a “non-
dummy* tuple if the non-anonymized attribute values are equal, and
a “dummy* tuple if they are not. The dummy values remain secret,
since the output tuples are encrypted in the trusted backend. The
input relations to join are k-anonymous processing views, and for
each anonymized attribute, the respective anonymized equivalence
classes per relation output the cross product, it follows that

Aggregate. Our system only allows aggregates at the top of the
operator tree. An aggregate with group by attributes {g;} and ag-
gregation attribute a proceeds in two steps. Aggregates are first run
obliviously per anonymized equivalence class. Next, the aggregate
obliviously combines the output of the aggregation on each equiva-
lence class. In order to maintain obliviousness, when the aggregate
operator encounters a “dummy tuple, it still unconditionally writes
to the aggregate output. This ensures that a curious observer cannot
infer which tuples are real or not real by observing memory access
patterns and execution time.

4.2 Discussion

Privacy-Performance Trade Off. K-anonymous query processing
enables federation members to achieve a profitable trade off be-
tween performance and privacy. We visualize this decision space in
Figure 2. Consider a medical researcher querying their electronic
health records that are stored using encryption in the cloud. She
wishes to set her k to a higher value when she is querying highly
sensitive data. For example, many states require records pertaining
to the treatment of HIV and other sexually transmitted infections
have greater k-values than more common diagnoses [28]. When
accessing these records, she would use oblivious querying. For
more common ailments, she is willing to forgo stronger privacy
guarantees in exchange for faster query runtimes.

This decision space, a range of k values for anonymization,
arises in many settings. In clinical data research, guidelines for
k-anonymization vary. A k from 5-11 is recommended for most
health contexts [37, 47, 53], although some data providers suggest
k = 3 [41] and other, more sensitive studies call for k = 30 [9].
For educational data, the US’s FERPA has various k-anonymization
guidelines for a variety of data release scenarios in [12, 59]. Energy
data is also has a range of k values for its release from k = 5 [14] to
k =15 [19].

By tapping into the expertise of the data federation, we will real-
ize substantial performance gains by adjusting k to the sensitivity
workload at hand. In practice, a private data federation may have

heterogeneous security policies on client queries to address these
domain-specific nuances.

Comparisons to k-anonymity. Our system focus on side channel
information means that it does not release the k-anonymous view
metadata. This stands in contrast with k-anonymity. K-anonymity’s
goal is to protect a data release. Thus, the vulnerabilities concerning
k-anonymity are in the context of an attacker having full access
to the k-anonymous private data release. As we will describe in
Section 5, anonymization information is kept secret in the secure
backends, so neither clients nor data owners ever have access to
the unencrypted metadata. This is an additional reason why the
vulnerabilities of k-anonymity do not directly apply to k-anonymous
query processing.

We note that if the data owners were to run a k-anonymous
data release on their dataset, unmodified database operators run
on the k-anonymous release would fulfill Definition 3.2. However,
this loses the benefits of our system: 1) our system allows for fed-
eration participants to choose their data release mechanism after
query execution, k-anonymous data releases must modify the input
dataset, thus lowering data utility , 2) high performance; efficient
algorithms for k-anonymous data release carry significant over-
head [39, 40, 48].

5 SYSTEM ARCHITECTURE

Combining a secure computation backend, our anonymization
scheme, and oblivious partitioning we discuss below, we claim that
our system fulfills our definition of k-anonymous query processing
found in Definition 3.2.

5.1 Federation Setup

KloakDB initializes the private data federation with all data owners
agreeing upon a query workload Q, schema 7", privacy parameter
k, and quasi-identifier set Q. The coordinator analyzes the query
workload to determine the set of control flow attributes C, and
unions them with the quasi-identifier set Q to form the anonymiza-
tion attribute set . With the anonymization attribute set $, the
coordinator iterates over all attributes and obliviously generates
k-anonymous processing views. Each data owner ends with their in-
put relations combined with anonymization metadata. An attribute
in a tuple contains both the real value as well as the anonymized
value. Anonymized values are mappings into anonymized equiv-
alence classes for each attribute in the anonymized attribute set,
thus constructing k-anonymous processing views.

Coordinator Requirements. The tasks delegated to the coordinator
are 1) k-anonymous view generation, 2) query planning, 3) query re-
sult release. The coordinator exclusively runs oblivious algorithms
and handles all data within the secure computation backend. We
abstract out the notion of the coordinator for ease of of presen-
tation, but note that the coordinator can be chosen amongst the
data owners. The coordinator is assumed to have the same level of
trust as the data owners. This departs from previous work which
required the coordinators to have more trust in order to provide
speedups to query execution [66].

Oblivious K -anonymous View Generation. The goal of oblivious k-
anonymous view generation is to generate a mapping between each
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Figure 3: KloakDB query workflow

attribute in the anonymized attribute set and anonymized value for
the attribute. This maps each tuple into the appropriate anonymized
equivalence class, per attribute. The coordinator iterates over each
attribute p € P. The steps presented below are repeated for each
attribute. Figure 4 illustrates the steps of this process.

Step 1: Statistics Collection The coordinator requests encrypted
histograms for attribute p from all data owners, for each relevant
relation. The data owners encrypt the histograms and send them to
the secure computation backend of the coordinator. The coordinator
never sees the unencrypted histograms. Our security assumptions
ensure that data owners will honestly send their statistics.

Step 2: View Generation The coordinator runs an oblivious
view generation algorithm inside secure computation backend, with
respect to privacy parameter k. The objective of the algorithm is
to uphold Definition 4.3. The algorithm ensures that each tuple
is grouped into an anonymized equivalence class with at least k
tuples, over every (,," ;) combination of data owners. The algorithm
iterates over the combined histograms, one attribute value at a time,
and obliviously generates a mapping between attribute values and
anonymized equivalence classes. The algorithm creates an empty
map, that is the size of the attribute domain. To remain oblivious,
the algorithm unconditionally writes to each map entry for each
attribute. This ensures that an honest-but-curious coordinator can-
not determine which anonymized equivalence class an attribute
value belongs in. Once the k-anonymized view map is complete, the
coordinator sends the encrypted map to the secure computation
backend of the other data owners.

Step 3: Mapping Each data owner processes the encrypted
mapping between attribute values and anonymized equivalence
classes within their respective secure computation backend. The
mapping is never revealed to any party. Data owners load the
relations into the secure computation backend. For each tuple, the
mapping algorithm iterates through the entire mapping list. This
ensures that a curious observer cannot gain information about
which tuples map to which anonymized equivalence class.

5.2 Query Execution Workflow

Figure 3 shows how a query travels through the system. A client
sends the query to the private data federation, where it is received
by the coordinator. The coordinator parses the query and constructs
a distributed k-anonymous query processing execution plan, an-
notating anonymized attributes for each operator. This distributed
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Figure 4: View Anonymization Workflow

query execution plan is a directed acyclic graph. Per each attribute,
anonymized equivalence classes are randomly assigned to data own-
ers for query processing. This mapping is computed in secure com-
putation backend, and is never revealed to any data owner. The coor-
dinator recursively calls each k-anonymous operator node, starting
at the leaves. Each operator has a set of anonymized attributes
it must honor in order to uphold k-anonymous query processing.
Before each operator, the query planner will call an oblivious parti-
tioning (Section 5.2) step to ensure that tuples in the anonymized
equivalence classes corresponding to the anonymized attributes for
the operator are collocated on the same data owner. K-anonymous
query processing operators as described in Section 4.1 are executed
on each data owners over the anonymized equivalence classes.

Oblivious Partitioning. Naively partitioning tuples across data own-
ers by their anonymized equivalence class could result in sensitive
information being exposed. Naive partitioning allows data owner
to determine the origin of tuples it recieves for distributed query
execution. Combined with knowledge of which tuples it keeps for
query execution, a data owner can infer the domain of tuples it is
computing on. To mitigate this, our system partitions tuples in two
steps. All operations occur within the secure computation backend.
In the first step all tuples are randomly assigned, and sent to a data
owner. In the second step the tuples are sent to the data owner that
has been mapped to the anonymized equivalence class for the cur-
rent operator’s anonymized attribute set. Tuples are sent in batches
to each data owner in each step, ensuring that the size of tuple batch
is > k. Our two step oblivious partitioning decouples the location
of anonymized equivalence classes over a sequence of operators
- this ensures data owners do not learn of the mapping between
attribute values and their respective anonymized equivalence class.

Data Release. At the end of operator execution, the results are sent
to a data release engine in the secure computation backend of the
coordinator. The coordinator then sends the private release of the
data back to the client. Our system architecture allows for the data
release mechanism to be modular and easy to modify and replace.
By default we use the differential privacy data release mechanism
presented in Shrinkwrap [6].



5.3 Utilization of Secure Computation Backend

Secure computation backends in the form of secure enclaves and se-
cure multiparty computation are critical for KloakDB providing it’s
security guarantees. We consider the life of a tuple to better under-
stand how and where a secure computation backend is used. A tuple
starts owned by a single data owner. It is loaded into the secure com-
putation backend when the federation is initialized. After this point,
all interactions with the tuple are with the secure computation back-
end. In the secure computation backend, the anonymization process
occurs - this ensures that the anonymization map is never revealed
to any data owner or client. Tuples are shipped between data own-
ers across the network during query processing, and are always
encrypted with respect to the secure computation backend of the
receiving party. As stated above, the entire anonymization process
occurs within the secure computation backend. The only time data
leaves the secure computation backend is after query release.

6 EXPERIMENTAL RESULTS

We consider a suite of micro-benchmarks with benchmarks on
synthetic and real world workloads. Our micro-benchmarks analyze
the performance of critical pieces of the architecture, while the
workload benchmarks demonstrate the performance of our system
in an end-to-end fashion. Our experiments demonstrate KloakDB
has scalable and adjustable performance, and that is significantly
outperforms the oblivious baseline.

6.1 Implementation

KloakDB is implemented as an in memory distributed query exe-
cution engine. We implement KloakDB in 4000 SLOC of C++. Our
prototype supports uses Intel SGX as the hardware enclave back-
end and EMP-Toolkit [68] for secure multiparty computation. The
enclave backend supports arbitrary number of data owners, and
the MPC backend supports two data owners. Our prototype takes
as input a SQL query and runs it through a standard SQL parser.
The implementation uses off the shelf RPC libraries with SSL, and
encrypts all data processed outside of the trusted backends.

6.2 Experimental Setup:

We run experiments on two testbeds. Our hardware Intel SGX
benchmarks are run on 4 Ubuntu 16.04 servers running Intel Core
i7 7700k processors, with 32 GB RAM, and a 1 TB 7200 RPM HDD.
The MPC experiments are run on two machines from the same test
bed. Our benchmarks utilize KloakDB in four modes of query pro-
cessing: plain, encrypted, k-anonymous, oblivious. Encrypted query
processing mode does not run the queries obliviously, and does not
pad the intermediate result sizes. Oblivious query processing mode
runs the queries obliviously and fully pads the output sizes. Plain
mode runs using PostgreSQL’s Foreign Data Wrapper (FDW) [55]
to simulate a conventional data federation.

6.3 Workloads

HealthLNK: We test KloakDB over electronic health records from
the HealthLNK data repository [52]. This clinical data research
contains records from seven healthcare sites. The data repository
contains about six million electronic health records from a diverse

institutions-including research hospitals, clinics, and a county hos-
pital-from 2006 to 2012. This dataset has significant skew, for exam-
ple, a patient A with a disease X, might have more vital recordings
than patient B with disease Y. Running KloakDB on this datatset
enables us to stress our model in the presence of significant skew.
We map each site in the federation to a machine in our four-node
testbed. The size of the HealthLNK dataset on our testbed is ap-
proximately 39 GB.

We experiment with queries that are based on real clinical data

research protocols for c. diff infections and heart disease [31, 51].
We use public patient registries for common ailments to bound the
duration of our experiments. A registry lists the patient identifiers
associated with a condition with no additional information about
the individual. We maintain a patient registry for heart disease
sufferers (hd_cohort) and one for individuals affected by c.diff (cd-
iff_cohort), an infection that is frequently antibiotic-resistant. Our
queries are shown in Table 1.
TPC-H: TPC-H is a standard synthetic workload and dataset which
simulates an OLAP environment [62]. We choose different scale
factors depending on the specific experimental setup, using varying
scale factors depending on the experiment. We run use queries 3,5,
and 10.

6.4 Anonymized View Generation Scalability

We run anonymized view generation on one, two, three, and four re-
lations in secure enclaves with four data owners. We scale the data
size with TPC-H scale factors .1, 1, and 10. We use the customers,
orders, lineitem, and supplier relations from the TPC-H schema.
Orders is anonymized on the "(o_custkey)", lineitem on "(I_suppkey,
1_orderkey)", supplier on "(s_suppkey)", and customer on "(c_custkey)".
We choose these attributes since they are common join keys for
many TPC-H queries. The results are presented in Figure 5.

The anonymization time scales roughly linearly with the data
size: with a scale factor of .1 is 5s, with scale factor 1 is 44s , with
scale factor 10 is 580s. The anonymization time is not uniform across
relations, depending on data size and range. Gathering histograms
requires running a COUNT (*) type query on the relation, where
the runtime will depend on size and range. For example, processing
the lineitem relation takes 60% - 70% of the time of the overall
anonymization. Anonymization has substantial network costs since
both the histograms have to be gathered at the coordinator, and
then the anonymization maps must be distributed to all hosts.

The oblivious algorithm we implement for generating the k-
anonymous processing views takes approximately 25% of the time
of anonymization. The anonymization time can be amortized over
the lifetime of the federation.

6.5 K-anonymous Join Study

In this experiment we run a join on two hosts with TPC-H tables
lineitem and orders. For MPC we run the experiment at SF .01, for
SGX we run it at both SF .01 and 1. We anonymize the input rela-
tions with respect to the join key, orderkey. As the k-anonymous
parameter increases, join execution time increases proportional to
the k parameter. For a single join, we achieve nearly linear per-
formance degradation as a parameter of k. We realize this very
efficient result with the following intuition: given n input tuples in



Name Query
aspirin SELECT gender, race, avg(pulse) FROM demographics de, diagnosis di, vitals v, medications m
profile WHERE m.med = ’aspirin’ A di.diag = 'hd’ A dd.pid = di.pid A di.pid = v.pid A m.pid = di.pid;
comorbidity SELECT diag, COUNT(*) cnt FROM diagnoses WHERE pid € cdiff_cohort A diag <> ’cdiff’ ORDER BY cnt DESC LIMIT 10;
dosage study | SELECT pid FROM diagnoses d, medications m WHERE d.pid = m.pid AND medication = ’aspirin’ AND
icd9 = ’internal bleeding’ AND dosage = ’325mg’
Table 1: HealthLNK query workload.
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each relation, and an anonymization parameter of k, each matched
equivalence class produces O(k?) tuples. The anonymized view gen-
erator produces approximately n/k equivalence classes per relation.
Hence, the output size of a k-anonymous join is O(nk). The join’s
execution time is proportional to the size of its inputs, therefore as
k increases, we see a commensurate linear increase in execution
time. In MPC, as we increase k, performance increases linearly.
With k = 5, the MPC join takes 614ms, k = 100, 12457ms - a 20X
performance penalty. The SGX backend also has performance linear

Figure 7: TPC-H Workload. Encrypted, k-anon mode run with
SF 1. Oblivious run with SF .01

6.6 TPC-H Query Workload

We run KloakDB on three TPC-H workload queries 3,5,10 in SGX
with four data owners. We choose these queries because of their
complex aggregates combined with multiple joins. We run with
scale factors 1 for encrypted mode, and k = 5, 10, 20. Running obliv-
ious query processing with TPC-H SF 1 exceeded our deadline of
4000 seconds. We use scale factor .01 in order to allow the oblivi-
ous baseline to complete. Even with a substantially larger datasize,
k-anonymous query processing significantly outperforms oblivi-
ous computation. This experiment demonstrates two properties
of KloakDB: 1) Tunable performance with k, 2) performance over
oblivious baseline. As we increase the k from 5-20, the performance
scales roughly linearly with the security parameter.

6.7 HealthLNK Query Workload

We run KloakDB on our real-world workload in SGX with four data
owners, omitting the anonymization setup time in the presentation.
For the four relations used in our queries, the anonymization time
for a year of data took a little over two seconds. Our experiments
validate the viability of KQP on a dataset with significant skew.
Aspirin Profile Operator Performance We analyze the per op-
erator overhead of KloakDB with the aspirin profile query in Fig-
ure 8. We measure this query’s runtime in encrypted, k-anonymous
(k = 5), and oblivious mode. We randomly select 25 patients from
the HealthLNK dataset from one year of data.

Figure 8 presents the operator runtime in each execution mode.
The sequence of three joins is where KQP assumes a substantial



performance gains over oblivious query processing. In oblivious
mode first join emits n? tuples, the second produces n>, and so on.
In contrast, the expected cardinality of the first KQP join output is
O(nk) tuples, the second join O(nk?) and so on. The third join takes
approximately 6 ms in encrypted mode, 650 ms in k-anonymous,
and 93000 ms for oblivious processing. This is a 103x slowdown be-
tween k-anonymous and encrypted, and a 143x slowdown between
oblivious and k-anonymous execution. The aggregate in encrypted
mode takes approximately 5ms, in k-anonymous 6700ms, oblivious
27900ms. The performance gap between k-anonymous mode and
encrypted mode is due an unoptimized implementation, however
the k-anonymous aggregate is 5x faster than oblivious execution.
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The overall runtime for encrypted execution, k-anonymous, and
oblivious is 320 ms, 6600ms, 123,000 ms respectively. The slow-
down incurred by k-anonymous execution compared to encrypted
execution is 21X, and the speedup of k-anonymous execution in
comparison to oblivious execution is 18X. Due to the prohibitively
expensive overhead of oblivious execution, we sampled only 25
patients for aspirin profile. As the data size increases, we expect the
gap between oblivious and k-anonymous execution to widen.
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Figure 9: HealthLNK Query Workload (Enclave)

Full Distributed Workload In this section we run the full query
workload in Table 1. We demonstrate that k-anonymous query
processing provides substantial performance improvements over
oblivious query processing while providing data protection in com-
parison to encrypted execution. We run the queries in four modes:
plain, encrypted , k-anonymous, and oblivious. For the comorbidity
and dosage study queries we run the queries on a full year of data
in all four modes. However, the aspirin profile queries was unable
to complete in oblivious mode on a full year of data, therefore we
sample 25 unique patients per host. Figure 9 has the results of the
full workload. The comorbidity query demonstrates that even with
a simple query, k-anonymous query processing is an attractive al-
ternative to oblivious query processing. K-anonymous execution
has a 15X speedup compared to oblivious execution, and 6X slow-
down compared to encrypted. The dosage study query sees a 31X
speedup in k-anonymous execution compared to oblivious execu-
tion, and a 1.03X slowdown in k-anonymous execution compared
to encrypted. We detailed the performance for aspirin profile in this
query in Section 6.7.
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Dosage Study Scale-up In this section we verify that as the input
tuple size increases, the gap between k-anonymous execution and
oblivious execution widens. We use dosage study so that oblivious
execution may complete. We vary the number of patients we sam-
ple to measure performance changes for data of increasing size in
encrypted, 5-anonymous, and oblivious mode. Figure 10 shows the
runtime of this query. K-anonymous execution is slightly slower
than oblivious execution with 500 sampled patients owing to the
overhead of itsk-anonymous processing view setup. As the input
size increases, k-anonymous query processing offers significant
performance benefits over full-oblivious query processing. With
3,000 patients, the runtime for encrypted, k-anonymous, and full-
oblivious query processing respectively are approximately 181ms,
187ms, and 198369. This yields 1.03X slowdown for k-anonymous
mode compared to encrypted, and 1060X speedup for it in compari-
son to oblivious. The stark slowdown for oblivious mode is due to
the substantial memory pressure imposed by exploding cardinali-
ties, leading the join output to spill to disk one equivalence class at
a time. In k-anonymous mode, scaling the input size from 500 to
3000 patients yields a 1.1X slowdown. This stands in contrast with
the 171X slowdown we observe in oblivious mode. This experiment



highlights an important feature of this system: KloakDB enables
substantial speedups for query processing as input data scales.

7 RELATED WORK

KloakDB builds on principles in secure query processing, oblivious
computation, and encrypted computation. We survey the existing
research in these areas.

KloakDB builds on principles in query processing, applied se-
curity, and automated access control policies. There is substantial
active research in all of these areas and we survey them in this
section.

Speaking broadly, there are two common methods for methods
for general-purpose computing over the data of two or more mutu-
ally distrustful parties: in software with secure multi-party compu-
tation [27, 72] and in hardware using hardware enclaves [10, 35].
The former is possible on any system, but exacts a substantial
overhead in making the computation oblivious and encrypting
its contents. The latter requires specialized hardware, but is more
efficient. We chose hardware enclaves for this work, and the princi-
ples of k-anonymous query processing readily generalize to secure
multi-party computation.

There has been substantial work on oblivious query processing
using hardware enclaves [3, 4, 22, 50, 56, 74]. In this setting a curious
observer of an enclave learns nothing about the data upon which
they compute by observing its instruction traces. We build on this
work by offering semi-oblivious query processing for querying data
of moderate sensitivity.

KloakDB is a private data federation. This challenge was re-
searched with the use of secure multi-party computation to com-
bine the private data of multiple parties in [5, 8, 13, 66, 70]. We
extend this work, but examine how to do it semi-obliviously in
exchange for faster query runtimes. Shrinkwrap [6] considers a
similar semi-oblivious model through reducing the output of joins
with differential privacy. Our work differs in that Shrinkwrap still
requires executing the full cross product for joins and only after
runs the Shrinkwrap protocol. Oblivious Coopetitive Analytics [13]
provides a framework to reduce the burden of oblivious computa-
tion through utilizing publically available constraints. However, the
system remains oblivious with respect to the public information.
Conclave [66] focuses on query rewriting to avoid computatation
in MPC, our work can be used in conjunction with the methods of
Conclave. Similary, ObliDB’s [22] methods of accelerated oblivious
query operators using SGX can be used with our work to provide
faster oblivious processing over equivalence classes.

K-anonymous data releases were proposed in [57]. There has
been substantial work on efficiently generating k-anonymous views
of a given dataset [7, 17, 34, 39, 40, 61]. KloakDB extends the tech-
niques in [15] to build k-anonymous processing views. Automati-
cally enforcing k-anonymous access control policies in a dataset
was researched in [20].

Most of the prior work on oblivious query processing focuses
on outsourced computation from a single data provider, either in
software with secure multi-party computation [2] or in hardware
with hardware enclaves [3, 74]. Some of them [5, 8, 66, 70] offer
interoperability for multiple data owners.

There is also work about computing queries in the cloud over
data stored with fully homomorphic encryption [54, 63]. Encrypted
databases have reduced expressiveness since they cannot readily
compose operators for nested blocks of select statements.

8 CONCLUSIONS

We presented a semi-oblivious query processing model, k-anonymous
query processing for private data federations. With KQP, data own-
ers have a fine grained knob with which to trade off privacy and
performance. Our formalization of k-anonymous query processing
allows for complex queries, while protecting against unauthorized
privacy leakage. This is an important step towards more approaches
that strike a balance between security and performance for querying
private data. Our model is grounded in k-anonymity, a relevant and
widely deployed privacy model. We utilize a privacy model which
is the cornerstone of regulatory requirements in a few industries,
which should allow our work to have immediate impact. We built
and tested a prototype KloakDB, which implements k-anonymous
query processing using either secure multiparty computation or
hardware enclaves.

Our evaluation shows KQP provides fine-grained tunablility for
increasing privacy. Our join study demonstrates a linear tradeoff
between privacy and performance. On a real-world dataset with a
real-world workload we demonstrate speedups of 15X-1060X. Our
results show that if KQP is the appropriate query processing model
for a data federation, there is significant room for performance and
scalability gains.
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